
Heteropolymer sequence design and preferential solvation of hydrophilic monomers:
Application of random energy model

Longhua Hu and Alexander Y. Grosberg
Department of Physics, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455, USA

�Received 23 January 2007; published 30 April 2007�

We study the role of the surface of the globule and the role of interactions with the solvent for designed-
sequence heteropolymers using the random energy model. We investigate the ground-state energy and surface-
monomer composition distribution. By comparing the freezing transition in random and designed-sequence
heteropolymers, we discuss the effects of design. Based on our results, we are able to show under which
conditions the solvation effect improves the quality of the sequence design. Finally, we study sequence-space
entropy and discuss the number of available sequences as a function of the imposed requirements for design
quality.
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I. INTRODUCTION

The simplest concept taught to students about protein
structure is that hydrophobic monomers are mostly inside
water-soluble globules, while hydrophilic monomers are
mostly on the surface. This beautiful idea has been around
for over half a century �1,2�, everyone agrees that it repre-
sents a cornerstone for our understanding of proteins �3�, and
yet it is somehow neglected in the most sophisticated theo-
ries of heteropolymers with quenched sequences. Here, we
have in mind the train of works which started from pioneer-
ing contributions by Bryngelson and Wolynes �4� and
Shakhnovich and Gutin �5�. The insight of the former authors
�4� was to recognize the deep connection between protein
field and that of spin glasses and to apply the random energy
model �REM� developed by Derrida �6�; the contribution of
the latter �5� was to actually derive the REM approximation
for a consistent microscopic model of a heteropolymer with
independent random interactions. By now, it is understood
that the REM is a well-controlled mean-field approximation
for large compact heteropolymers �7�. The important part of
heteropolymer theory was also the idea of sequence design,
which was used both to better model proteins and to test
heteropolymer properties in general �8�.

What is important to emphasize is that heteropolymer
freezing and sequence design theories operate within the so-
called volume approximation, neglecting surface terms in en-
ergy. Our goal in the present work is to investigate, for the
simplest tractable model, the interplay of heteropolymer
freezing and sequence design with preferential solvation of
some monomer species on the surface of the globule. In fact,
even for random sequences preferential solvation was not
included in REM-based heteropolymer theory until very re-
cently �9�. Our work is ideologically a sequel to the paper
Ref. �9�, and we will use the ideas of that work.

In a recent series of works �10,11�, sequence design was
discussed �under the different name of “coloring”� in a
slightly different prospective, with an eye on chemically pre-
paring proteinlike copolymers. The solvation effect was
given a very prominent role in these works. One of the goals
of our work is to make a closer link between various imple-
mentations of the sequence design paradigm.

This paper is organized as follows. First we will introduce
the solvation model �Sec. II A and Fig. 1�. Then we will talk
about the sequence design technique and how it is affected
by the solvation �Sec. II B�. The surface-monomer composi-
tion distribution is obtained in Sec. III A. Our major results
are summarized in the phase diagram of the system, sketched
in Fig. 3. Finally, we discuss in Sec. V the availability of
sequences as a function of their quality characterized by the
energy gap between their ground state and the majority of
other states.

II. MODEL

A. Energy: Bulk and surface terms

In our model, each monomer is assigned a quenched ran-
dom variable �, which represents its monomer type. For the
random sequence, we assume that � for each monomer is
drawn from some probability distribution p���. For simplic-
ity, we restrict p��� to have zero average ��p���d�=0 and
unit variance ��2p���d�=1. There are 20 possible values of
� for natural proteins since the number of amino acids is 20.
Theoretically it is convenient to consider a continuous distri-
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FIG. 1. �Color online� Illustration of the model. Monomers are
connected by covalent bonds, and monomer type is presented by the
shade. Surface is enriched with hydrophilic monomers, such that
the distribution of surface monomers f��� is shifted compared with
the bare distribution p���.
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bution of � or a discrete distribution of just two monomer
types.

In our model, the energy of the system consists of contri-
butions from direct contact between monomers and of the
contribution of contacts between monomers and solvent. The
former contact energy has a “homopolymeric” strong aver-

age attraction part B̄ independent of monomer type and a
“heteropolymeric” contribution −�B�i� j with amplitude �B.

We assume that B̄ is sufficiently large, such that the globule
is quite dense, and the contacts with the solvent take place
only on the surface of the globule. We mostly look at the
case �B�0, such that similar monomers attract each other.
We assume that each contact with the solvent provides en-
ergy −��i. Thus, since ��0, monomers with ��0 are hy-
drophilic, while those with ��0 are hydrophobic. Thus, the
Hamiltonian of our model depends on the sequence, pre-
sented by seq= ��i�, and conformation, specified by positions
of all monomers conf= �ri�. The Hamiltonian reads

H�seq,conf� = �
i�j

N

�B̄ − �B�i� j��ij − ��
i�G

K

�i. �1�

Here G is the set of K	N2/3 monomers located on the sur-
face and, therefore, exposed to the solvent. �ij 
��ri−r j� is
contact map defined as

�ij = �1, ri and r j are nearest neighbors,

0, otherwise.
� �2�

As we mentioned, we only consider the most compact con-
formations and we assume there are Q contacts in every
conformation, so �i�j

N �ij =Q. For a compact globule, Q	N.
For simplicity, we just use N to denote the number of con-
tacts in a conformation.

Apart from the surface term, this model is equivalent to
the one considered earlier—e.g., �12�. A schematic of the
model is sketched in Fig. 1. In our model, we assume that
some K monomers are exposed to the solvent because they
belong to the surface layer of the globule, while other N-K
monomers are not at all exposed to the solvent. This is, of
course, only an approximation to reality, in which solvent
exposure changes continuously. But this is a good approxi-
mation as long as we deal with a dense well-formed globule.

A polymer chain with Hamiltonian �1�, with quenched
sequence and in statistical equilibrium in terms of conforma-
tion, will exhibit some preference of hydrophilic monomers
towards the surface—as long as ��0. The way to character-
ize this quantitatively is to address the statistics of � values
for surface-exposed monomers. Namely, we will be inter-
ested in a distribution f��� of surface monomers. We expect
this distribution to be different from the bare distribution of
all monomers p���. Qualitatively, this is illustrated in the
inset of Fig. 1.

Of course, the effect of surface exposure to the solvent
depends on the sequence. In general, the hydrophilic effect
adds frustration to the system. Indeed, placing a certain
monomer on the surface necessitates placing its sequence
neighbors close to the surface, while their identity, or their �

values, might imply energetic preference for the interior re-
gion of the globule. To address this delicate sequence depen-
dence, we will look at designed sequences.

B. Sequence design

A random sequence can be generated by a suitable Pois-
son process—i.e., by the probability distribution

Pseq
�0� = 

i=1

N

p��i� . �3�

By sequence design, we want to bias the sequence probabili-
ties in a controlled fashion. This can be done in the following
way.

The sequence design procedure starts from the choice of
the target conformation which we will denote �. In our con-
sideration here, � might be any compact conformation; in
other words, we ignore the difference of designability for
possible target conformations �13�—simply because design-
ability and surface exposure are two independent effects and
we do not want to further complicate our work by accounting
for designability. There is no doubt that designability along
with surface effects must be incorporated into the complete
theory. Given a target conformation �, we will consider a
statistical Gibbs ensemble in which conformation �ri�=� is
quenched, while the sequence ��i� is annealed and comes to
thermodynamic equilibrium at the design temperature Td,
which is not necessarily equal to the real temperature T.
More specifically, we use the canonical sequence design
scheme �12�, in the sense that it is generated by the canonical
ensemble of annealed sequences. This results in the follow-
ing probability distribution of sequences:

Pseq
� = Pseq

�0� exp�− Hd�seq,��/Td�

�
seq�

Pseq�
�0� exp�− Hd�seq�,��/Td�

, �4�

where the denominator ensures normalization. Of course,
this is just the scheme; the real features of the ensemble of
designed sequences are controlled by the design Hamil-
tonian, Hd�seq, � �. It might be the same Hamiltonian as in
Eq. �1�, but this is not at all necessary. Moreover, it is useful
to explore the more general situation in which Hd�H. We
will use a design Hamiltonian of the same functional form as

in Eq. �1�, but with the different parameters �Bd and �d �Bd¯ ,
although formally included for symmetry, does not play any
role in sequence design, because this term in energy is se-
quence independent�:

Hd�seq,�� = �
i�j

N

�Bd − �Bd�i� j��ij − �d �
i�G�

K

�i. �5�

From this point of view, Td is just a parameter which controls
the quality of design: when Td→�, the ensemble of designed
sequences is essentially the same as random, while at lower
Td designed sequences are statistically strongly biased by
optimization the design energy.
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The protein freezing transition and sequence design have
been the subject of a large number of works—for example,
�14–17�.

We work on artificial model proteins design. In vivo De
Novo design of globular protein has long been successfully
carried out �see, for example, �18� for a four-helix protein
design from first principles�. The off-lattice model sequence
design works �19,20� on a 60-residue SH3 protein domain
showed that the folding quality of designed sequences varies
for this small protein.

C. High-Td expansion of the sequence-averaged target state
energy and random energy model

First let us look at the energy of target conformation �,
averaged over the ensemble of designed sequences:

�E��seq�� = �
seq

Pseq
� H�seq,�� . �6�

As in �12�, we can evaluate this to the lowest order in the
high-Td expansion:

�E��seq�� = �H� +
1

Td
��HdH� − �Hd��H��

= NB̄ −
1

Td
�N�B�Bd + K��d� . �7�

We see that sequence design, on average, leads to a lowering
of the target-state energy. The only novelty, albeit quite
trivial, compared at the volume approximation �12�, is that
both contact energy and surface energy terms contribute to
the target energy decrease.

A priori, one could think that the design lowers not only
the target-state energy, but also energies of some other
states—particularly those similar to the target state. It is well
known, however, that because of the geometry of compact
conformations, there are not many sufficiently similar com-
pact conformations and, therefore, the statistics of energies
of other conformations, to a good approximation, remains
unaffected by the design �see �21� for a further, more detailed
discussion of this point�. This approximation is equivalent to
the REM. We will work within this REM approximation.

Technically, the REM can be justified as a mean-field ap-
proximation �7� valid for sufficiently stiff polymers. We
therefore will assume that chain entropy per monomer, s �de-
fined such that esN is the number of conformations�, is small:
s	1. In fact, it is known �7,21� that the REM really works at
a softer condition s
1, and in reality it does meet the latter
condition �it is estimated to be about 0.4 in proteins�.

III. MONOMER DISTRIBUTIONS INSIDE
AND ON THE SURFACE

A. Design by solvation

As stated above, our major goal is to address surface ef-
fects in terms of the distribution of � values among surface
monomers. With the designed sequences, we can first ask,
what is the distribution of surface monomers p���� just in
the design state when conformation is frozen? This is of

course fundamentally a simple question, because the statisti-
cal mechanics of sequences at quenched conformation is not
frustrated �21�. Basically, what one has to do is to take the
probability distribution of sequences �4� and to integrate out
all spin variables ��i� except surface monomers—i.e., all i
except those belonging to the target conformation surface set
G�.

As a warm-up, let us perform this procedure for the
simple yet important special case of a design Hamiltonian, in
which we set �Bd=0. In this case, design affects only surface
monomers. The probability distribution of sequences is tre-
mendously simplified; it can be factorized:

Pseq
� = Pseq

�0�

exp���d/Td� �
i�G�

K

�i�
�
seq�

Pseq�
�0� exp���d/Td� �

i�G�

K

�i��
= 

j�G�

p�� j� 
i�G�

p���i� , �8�

which means that the ensemble of monomers in the bulk of
the globule remains unaffected, distributed as p���, while
every surface monomer, independently of others, is distrib-
uted as

p���� = cp���exp��d�/Td� , �9�

where c is the normalization factor, c
=1/�p����exp��d�� /Td�d��. Thus, for all monomers, in-
cluding N−K monomers that were in the bulk during the
design process and K monomers that were on the surface, the
overall distribution of � reads

ptot��� =
�N − K�p��� + Kp����

N
= p��� +

K

N
�p���� − p���� .

�10�

This result, Eq. �9�, indicates that even this simplified design
procedure, with �Bd=0, favors hydrophilic monomers on the
surface, because for hydrophilic monomers with ��0, we
have p����� p���. Compared with the bare monomer distri-
bution p���, hydrophilic monomers have a larger probability
to appear on the surface of target conformation.

The simplified �Bd=0 design scheme is reminiscent of the
method used in �10,11�, in which all surface monomers of
target conformation �G� in our notation� are made hydro-
philic while all monomers inside the globule are hydropho-
bic. In our more general consideration, it is just more prob-
able but not necessary for the surface exposed monomers to
become hydrophilic during the design. The model of the
works �9� corresponds to the Td→0 limit of our theory.

B. Surface-monomer distribution in the ground state

Let us continue examination of the simplified design
scheme, with �Bd=0, when only surface energy biases the
choice of sequences �design by solvation�. Our goal now is
to find the surface energy correction terms of the ground-
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state energy and, as the major step in this direction, we need
to consider the surface-monomer distribution f��� in the
ground state. One should realize that in the ground state, the
set of surface exposed monomers may or may not be similar
to the set of monomers exposed to the surface during the
design; in other words, f��� might be similar to p���� or
might be quite different from it. Therefore, there are two
contributions to the surface energy, one due to the monomers
exposed to the surface and the other due to the fact that
selection of surface monomers affects the monomer compo-
sition left inside the globule. To express this quantitatively,
we write for the arbitrary state an equation similar to Eq.
�10�:

ptot��� = pin��� +
K

N
�f��� − pin���� , �11�

where pin��� is the distribution of monomers left inside.
Comparing Eqs. �10� and �11�, we find

pin��� � p��� +
K

N
�p���� − f���� . �12�

As everywhere, we neglect here the terms O(�K /N�2). Thus,
we directly see already here how the deviation of the state
from the target state comes into play.

To compute f��� for the ground state, we adapt for de-
signed sequences the procedure which was developed in Ref.
�9� for random sequence solvation. To make our work self-
contained, we briefly outline major steps.

We begin by constructing a separate REM, called the sub-
REM, for each possible choice of surface monomers G. In-
deed, for each G there are still many conformations avail-
able. The number of such conformations is naturally written
in the form MG=eNs−K�G, where s is conformational entropy
per monomer in volume approximation and �G is entropy
loss due to confinement of some monomers on the surface.
Although MG is much smaller than the total number of con-
formations, M =esN, but the entropy loss caused by fixation
of G monomers on the surface is only a surface effect O�K�.
Following �9�, we adopt a bold approximation that �G= �̄ is
independent of G; in this approximation, counting all states
shows that �̄=ln�Ne /K�.

For each sub-REM, the energies of all MG states are ran-
dom in the sense that they depend on random sequence real-
ization, and it is reasonable to assume �9� that these energies
are independent Gaussian variables, because each energy, ac-
cording to formula �1�, has of order-N mutually statistically
independent bulk contributions and of order-K independent
surface contributions. To write down the resulting Gaussian
distribution, we should determine the corresponding mean
and variance. The mean is found by averaging the bulk terms

�B̄−�B�i� j� over the distribution pin��� plus averaging the
surface terms −��i over the distribution f���, and the vari-
ance is similarly found by averaging the second moment.
This results finally in the following Gaussian distribution of
random energy:

wG�E� � exp�−
�E − �NB̄ − K�G��2

2N�B2 + 2K�B2�G
� , �13�

where

G =� �f���d� ,

�G = 2� �2�p���� − f����d� . �14�

Notice that the dependence on the surface-monomer group G
is only through the surface-monomer distribution and that
the dependence on design is due to the p����.

Every sub-REM has a certain ground-state energy Eg�G�
=Eg�f����, which is just the lowest of MG random energies
drawn independently from the distribution �13�. Energy
Eg�f���� is still a random variable; its probability distribution
can be found from the so-called extreme value statistics �22�
�see also the Appendix�

WG�E� =
1

Tfr
exp��Eg

Tfr
− exp��Eg

Tfr
�� , �15�

where Tfr=�B /�2s and �Eg=E−Eg
typ�f���� is the deviation

of the ground-state energy from its most probable �typical�
value, which includes both volume and surface contribu-
tions:

Eg
typ�f���� = N�B̄ − 2sTfr� + K��̄Tfr − �G + sTfr�G� .

�16�

Notice that the only dependence of the probability distribu-
tion WG on the surface monomers G is hidden in G and �G
inside the most probable energy Eg

typ�f���� and the depen-
dence on design is also there inside �G �see formula �14��.
We also mention that Tfr=�B /�2s appearing here as a pa-
rameter of the ground-state distribution happens to have its
physical meaning—it is volume-approximated freezing tem-
perature of the random sequence polymer �9�.

The probability to get the ground-state energy anywhere
below its typical most probable value �16� is exponentially
small. However, we try exponentially many times—namely,
we have to choose the lowest among eK�̄= �Ne /K�K sub-
REM ground states. Therefore, we have a good chance to
find some particular subgroup G with energy noticeably be-
low the typical value �16�. Essentially, what we have to do
now is to resort a second time to extreme value statistics and
find the expectation value of the lowest among the sub-REM
ground states. It is convenient to perform this operation in a
slightly different, but equivalent form. Namely, we note that
the low-energy tail of the ground-state probability distribu-
tion, Eq. �15�, is exponential and, therefore, it looks effec-
tively like Boltzmann distribution, with Tfr playing the role
of temperature.

It is useful to note here that treating the tail of the distri-
bution �15� as effective Boltzmann distribution with tem-
perature Tfr is reminiscent and essentially equivalent to the
consideration given in Ref. �3� and explaining the origin of
the phenomenologically discovered quasi-Boltzmann distri-
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bution over the ensemble of evolutionary selected proteins.
Returning to our argument, finding the lowest among the

Eg
typ of the sub-REMs is equivalent to minimizing the effec-

tive “free energy,” in which the effective entropy is given by
the number of ways to choose K monomers with distribution
f��� from N monomers with distribution ptot���:

s�f���� = −� ptot����� ln � + �1 − ��ln�1 − ���d� ,

�17�

where ����=Kf��� /Nptot��� has the meaning of the fraction
of monomers with type � that are exposed to the surface.
Including this effective entropy, we have now the effective
“free energy”

Eg
typ�f���� − TfrNs�f���� . �18�

We minimize this with respect to f���, subject to normaliza-
tion condition �f���d�=1, and obtain

f��� =
N

K

ptot���
1 + �e�fr��� , �19�

where �fr���=2s�2− �� /Tfr�� and � is the Lagrange multi-
plier which has to be determined from the normalization con-
dition �f���d�=1. Comparing this with Ref. �9�, we see that
the only role of design in this case is the modification of the
monomer distribution: instead of bare distribution p���, we
have now the modified one ptot���. Let us see what the con-
sequences of this replacement fare.

Let us concentrate on the regime without the depletion
effect, when ����	1 at all values of �. This means that for
any monomer type, only a small fraction of it is solvated to
the surface region. Under such an assumption, f��� can be
approximated as

f��� � e−�fr����1 +
K

N
�c exp��d

Td
�� − 1��p��� , �20�

where we dropped for simplicity the �-independent normal-
ization factor. To gain some insight, let us look at f��� for a
couple of simple examples of bare monomer probability dis-
tributions. Since a real distribution involves a large number
�20� of monomer species, we examine two limits of two
monomer species and of the continuous Gaussian distribu-
tion.

1. Example: Bimodal distribution

In the simplest black-and-white model �23� two types of
monomers, one hydrophilic and one hydrophobic, appear
with same probability:

p��� =
1

2
���� + 1� + ��� − 1�� . �21�

Simple calculation shows that

f��� � ��� + 1�e−�/Tfr�1 −
K

N
tanh��d

Td
�� + ��� − 1�e�/Tfr

��1 +
K

N
tanh��d

Td
�� . �22�

We see that there are two effects bringing hydrophilic mono-
mers to the surface—that is, increasing f�+1� at the expense
of decreasing f�−1�. The first effect is due to � and is mea-
sured by the ratio � /Tfr. This effect is present in random
heteropolymers, has nothing to do with design, and is simply
energetic: since it is more favorable for the ��0 monomers
to be on the surface, so the surface gets enriched with such
monomers. The second effect is entirely due to design, and it
is governed by the design parameters �d /Td. This effect is
washed away at large design temperature, and it saturates at
small Td. Notice that this design effect is only a surface
effect; its maximal possible role is proportional to K /N. This
is because the best one can do with this type of design is to
shift the monomeric composition by an amount of about
K /N.

2. Example: Gaussian distribution

The opposite limit is presented by

p��� =
1

�2�
exp�−

�2

2
� . �23�

The corresponding surface monomer distribution is the fol-
lowing:

f��� � �1 +
K

N
�exp��d�

Td
−

1

2
��d

Td
�2� − 1��

�exp�−
1 + 4s

2
�2 +

�

Tfr
�� . �24�

In Fig. 2, we show a plot of an example of f��� as a function
of � for the Gaussian case. For comparison, random se-
quence solvation �Td→�� is also included. It can be seen

f(σ) without design

σ

f(σ) with design

p(σ)

FIG. 2. �Color online� A comparison of the original distribution
and surface monomer distribution with design, together with the
case of without design. Design favors the monomers with hydro-
philic type. For these plots as an example, we used the following
values of parameters: K /N=0.3, s=0.1, �d /Td=1, and � /�B=1.
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that design enriches the surface with hydrophilic monomers
such that the distribution is shifted toward the hydrophilic
region compared to the no-design case, which by itself is
already a shift relative to the bare distribution p���.

C. Sequence design by both solvation and monomer contacts:
Mean-field approximation

In the preceding section, we considered sequences de-
signed by the effect of preferential solvation of certain
monomer types under the chain preparation conditions. This
corresponds to having only the second term in the design
Hamiltonian �5� or having �Bd=0. By contrast, sequence de-
sign by monomer-monomer contacts—i.e., the limit of �d

=0 and �Bd�0—was considered in the literature before
�see, e.g., review article in �21� and references therein�.

In this section, we consider the general case when both
volume and surface terms of the design Hamiltonian �5� are
present. To make the argument, we resort to the mean-field
approximation for the design system. That means that we
consider design by an effective field which couples to the
variables � and acts differently on surface and bulk mono-
mers. Since the design Hamiltonian �5� is quadratic in �, the
said “design field” is proportional to �̄—an average value of
� defined self-consistently. It is then easy to realize that this
field vanishes in the bulk, because in our model design does
not affect the overall composition of the chain, and, there-
fore, �̄bulk=0. Therefore, the mean-field approximated design
Hamiltonian reads

Hmean field
d � − ��Bdz�̄surf + �d� �

j�G�

K

� j . �25�

Here, �̄surf is the average � of surface monomers �that is, of
monomers which happen to be on the surface during the
design process� and z is the coordination number �the num-
ber of neighbors� for surface monomers.

Many variants of the mean-field approximation were used
in protein physics �3,14–17�.

Within the mean-field approximation, the probability dis-
tribution of designed sequences �4� gets factorized into inde-
pendent distributions of all monomers, just like in the �Bd

=0 case. Accordingly, we obtain a distribution of surface
monomers, similar to Eq. �9�:

p���� � p���exp��Bdz�̄surf + �d

Td
�� , �26�

where we dropped for brevity the �-independent normaliza-
tion factor. Now, the value of �̄surf must be determined from
the self-consistency condition

�̄surf =� �p����d� =
� �p���exp��Bdz�̄surf + �d

Td
��d�

� p���exp��Bdz�̄surf + �d

Td
��d�

.

�27�

To gain insight into the properties of the latter equation, it is
useful to consider examples of bimodal and Gaussian distri-

butions for p���. We do that a few lines below, in Sec. III D,
but here we notice that once �̄surf is determined, the rest of
the analysis follows automatically along the lines of our pre-
vious consideration in Sec. III B. Indeed, all we need to
know to implement the result �19� is the overall monomer
distribution ptot���, which is known as soon as p���� is de-
termined �see Eq. �10��. Therefore, we can directly use our
results, Eqs. �20�, �22�, and �24�, with the replacement �d

→�d+�Bdz�̄surf
��d.
With that in mind, let us return briefly to the determina-

tion of �̄surf.

D. Implementing the self-consistency condition

1. Example: Bimodal distribution

For bimodal p���, Eq. �27� becomes

�̄surf = tanh��Bdz�̄surf + �d

Td
� . �28�

At �d=0, this equation has nontrivial nonvanishing solutions
only if �Bdz /Td�1, in which case there are automatically
two solutions of the opposite sign. That means that the non-
zero �̄surf in this case results only from spontaneous symme-
try breaking, because without �d the system has no prefer-
ence for hydrophobic or hydrophilic monomers dominating
the surface. The nonzero �d�0 breaks this symmetry and
yields always one and only one positive solution for �̄surf
�and possibly two negative ones which we ignore because
they have higher free energy�.

To some extent, the example with bimodal distribution of
monomers is just like an Ising ferromagnet; thus, Eq. �28�
has a form equivalent to the Ising-model mean-field equation
of state �24�.

In this bimodal case, we have �̄surf�1, which means that
in the replacement �d→��d, the solvation term �d dominates
if �d��Bdz.

2. Example: Gaussian distribution

For Gaussian p���, Eq. �27� is easily explicitly resolved:

�̄surf =
�d/Td

1 − z�Bd/Td
. �29�

This is usually very close to �d /Td, because �see Sec. IV� in
the most interesting regime close to the triple point of the
phase diagram, the denominator is dominated by unity.

IV. FREE ENERGY AND PHASE DIAGRAM
OF DESIGNED POLYMERS

A. Preliminary remarks

In this section, we will consider the possible phases of the
heteropolymer whose sequence is designed as discussed
above. A similar problem in volume approximation is well
known in the literature �see, e.g., the review in �21� and
references therein�. Specifically, we will consider three
phases and the transitions between them. We will summarize
the relations between phases in terms of the phase diagram,
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Fig. 3, in variables Td and T, which describe, respectively,
the ensemble of sequences and the ensemble of conforma-
tions for any given sequence. The relevant phases in the
diagram are named, respectively, liquidlike globule, glassy
globule, and folded globule. We remind the reader that the
liquidlike globule is the state where a great many conforma-
tions contribute to the partition function; the glassy globule
is dominated by one or a few conformations, but those unre-
lated to the target conformation �; and the folded globule is
dominated by the target conformation �. It is fairly obvious
and illustrated in Fig. 3 that surface solvation effects do not
change the topology of the phase diagram, but do affect the
specific positions and shape of the corresponding phase tran-
sition lines; these surface-driven changes are the subject of
our interest in this section.

The temperatures of the transitions from liquidlike to
glasslike and to folded globules are called the glass tempera-
ture Tg and folding temperature Tf, respectively. Our goal is
to analyze the role of surface solvation effects and design in
both Tg and Tf. In other words, we want to calculate how
surface corrections to Tf and Tg depend on the design tem-
perature Td.

As regards the third phase transition line, that between
folded and glassy globule phases, this line must be vertical in
the phase diagram. Indeed, both folded and glassy globules
are zero-entropy states; the transition between them cannot
be driven by temperature change. In a phase diagram like in
Fig. 3, the corresponding phase boundary must be repre-
sented by a line parallel to the temperature axis. This argu-
ment does not rely on the volume approximation and, there-
fore, remains valid independently of surface solvation
effects. Therefore, this line of phase transition is entirely
described by the value of design temperature at which there
is the triple point; we call it Td

�3�. We want to calculate also
the surface contribution to this quantity.

The way we approach the phase diagram is based on the
idea that for any frozen globule phase, whether glassy or
folded, the free energy coincides with energy, because en-

tropy vanishes given the number of contributing states of
order unity. On the other hand, the free energy of the liquid-
like globule we can find due to the property of the REM that
the quenched averaged free energy is equal to the annealed
average above the glass temperature. Therefore, what we
shall do is to compute the annealed average free energy and
find the temperature of entropy “catastrophe”—at which en-
tropy vanishes: that is, the glass temperature. Of course, our
goal is to address surface terms and design terms in this
procedure. Following this program, we write the annealed
average as a functional of the surface monomer distribution
f��� as

F�f� = − T ln �
conf

e−E/T

� − T ln � esN−K�G+Ns�f����wG�E�e−E/TdE

� F̄ + Fsurf�f� , �30�

where

F̄

N
= B̄ − sT −

�B2

2T
�31�

is the bulk contribution to the free energy and

Fsurf�f�
K

= �̄T −
�B2

T
� �2p����d� +

N

K
T� d�ptot���

� ������� − ln
1 − �

�
� + ln�1 − ��� �32�

is the surface contribution to the free energy. In Eq. �32�,

���� =
�B2

T2 �2 −
�

T
� ,

p���� =

p���exp���d

Td
��

� p���exp���d

Td
��d�

. �33�

In deriving the free energy, we have used the saddle point
approximation since above glass temperature, the free energy
is dominated by the saddle point of the partition function.

Optimizing Fsurf�f� yields

�� =
1

1 + �e���� =
Kf����
Nptot���

, �34�

and then the optimal value of Fsurf�f� is evaluated as

Td

T Liquid-like globule

Fo
ld

ed
gl

ob
ul

e

Glassy globule

Td
(3)

Tf

Tg for Gaussian

Tg for Bimodal

volume approx

FIG. 3. �Color online� A sketch of the phase diagram of the
heteropolymer system. There are three phases: random liquidlike
globule, frozen glassy globule, and folded globule. The surface term
shifts the phase diagram for volume approximation. For the bimodal
distribution, the glass temperature is design independent, while in
the Gaussian distribution, the glass temperature increases for better
design conditions. Phase diagram lines are not continued to the
very-low-Td region since the system runs out of sequences there.
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Fsurf�f��
KT

= 1 +
� ptot���ln

�e����

1 + �e����d�

� ptot���
1 + �e����d�

−
�B2

T2 � �2p����d� − ln � �ptot���
1 + �e����d� .

�35�

These results are similar to those obtained in Ref. �9�, except
we have now nonrandom sequences, as manifested by the
dependence on Td. In that work �9�, the solvation effect in
random sequences was treated as the response of the globule
to the surface solvation “field.” The linear response regime is
characterized by the statistical independence of disordered
parts of surface and volume energies. The saturation regime
is characterized by the depletion effect, when preferential
solvation of a certain monomer species exhausts these mono-
mers from the globule. For completeness, there is also a nar-
row range of the so-called weak-response regime. Neither
weak-response nor saturation regimes are present for the
black-and-white polymer model, with bimodal distribution of
monomer types.

B. No depletion: Glass temperature

Let us first consider the case when solvation does not
cause the depletion of any monomer type—that is, ����
	1 at every �; then,

Fsurf�f��
KT

� −
�B2

T2 � �2p����d� − ln � ptot���e−����d� .

�36�

First we will discuss how the glass temperature Tg is affected
by the surface energy, relative to the volume approximated
value Tfr=�B /�2s. The glass temperature must be deter-

mined from by the condition −�
�F�f�

�T �Tg
=0. Since −� �F̄

�T �Tfr
=0,

we can write �denoting temperature derivatives by prime

sign� �Tg�Tg−Tfr�−�
Fsurf�

F̄�
�Tfr

. Then

�Tg

Tfr
�

K

N� �

2sTfr

� �p���e−�fr���d�

� p���e−�fr���d�

+� �2p����d�

−

2� �2p���e−�fr���d�

� p���e−�fr���d�

−
1

2s
ln � p���e−�fr���d�� ,

�37�

where we have replaced ptot��� with p��� because �Tg itself
is already of order O�K /N� and we neglect any higher-order
corrections. The design effect is present here through p����.

Relative to the no-solvation case, the order-O�K /N� cor-
rection to the glass temperature is positive; in other words,

the glass temperature is increased due to the solvation effect,
and thus the designed heteropolymers may be found in the
glassy globule state in a broader temperature range.

In the following part, we will further simplify and discuss
�Tg using the examples of p���.

1. Example: Bimodal distribution

For bimodal p���, ��2p����d�=1, and design effect does
not show up in the glass temperature,

�Tg =
K

2sN
Tfr� �

Tfr
tanh� �

Tfr
� − ln cosh� �

Tfr
��

�
K

N�
�2

2�2s�B
when

�

Tfr
	 1,

ln 2

�2s�3/2�B when
�

Tfr
� 1.� �38�

When the solvation strength � is small, � /Tfr	1, this corre-
sponds to the statistically independent region, in which the
surface term and volume term in a heteropolymer globule are
roughly statistically independent. In this region, �Tg��2.

The region of � /Tfr�1 is the saturation region. When the
solvation strength � is so large, essentially all the surface
monomers are of hydrophilic type, as can be clearly seen
from the surface-monomer distribution, Eq. �22�: when
� /Tfr�1, the surface-monomer distribution function is
dominated by the hydrophilic term f�+1�. In this regime, �Tg

becomes independent of �, because � is already so large that
all surface places are occupied by hydrophilic monomers and
further increase of � cannot change anything.

2. Example: Gaussian distribution

For Gaussian p���, we can write ��2p����d�
= ���d /Td�2+1���d /Td�2�1+2z�Bd /Td�+1���d /Td�2+1,
where the asymptotic form comes from the fact that
Td / �z�Bd��1 since we work in the regime of Td�Td

�3,0�

=�Bd /�2s, where Td
�3,0� is the triple point in volume approxi-

mation. Then we have

�Tg �
K

N
Tfr���d

Td
�2

+ 6s +
�2

2�B2� , �39�

where we also used the fact that s	1. As in Ref. �9�, the
system with Gaussian-distributed �, unlike the bimodal one,
has the weak-response regime at very small �, when � /Tfr
	s; in this regime, surface solvation is insignificant. The
region of � /Tfr��24s is the regime where volume and sur-
face disorder are statistically independent, and the result in
this region, in terms of dependence on �, is similar to that of
the bimodal distribution.

Of course, the major difference from the bimodal example
is that in Gaussian case, there is an additional term due to
sequence design. That term increases the glass temperature,
which means design, as usual, makes for a more stable
ground state.
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C. Triple point

Now let us consider the folded region and begin with the
surface-corrected triple point Td

�3�; we want to see its change
�Td

�3�=Td
�3�−Td

�3,0� relative to Td
�3,0�=�Bd /�2s determined in

volume approximation. In general, a triple point is deter-
mined from the condition that the glass temperature equal the
folding temperature, Tf =Tg. The glass temperature, along
with its surface corrections, is already known to us; see for-
mula �37� or its simplified versions �38� and �39�. The fold-
ing temperature Tf should be calculated from �E��seq��
=F�f��. We take the averaged ground-state energy from for-
mula �7�, and we take the F�f�� from Eqs. �31� and �35�; in
the latter �which is the surface part�, we must neglect all
order-O�K /N� corrections. The result reads

�Td
�3� �

K

N
Td

�3,0�� ��d

�B�Bd −� �2p����d�

−
1

2s
ln � p���e−�fr���d�� . �40�

From this formula, it is not even clear whether �Td
�3� is posi-

tive or negative. As with other cumbersome results, let us
look at the specific examples of p���.

1. Example: Bimodal distribution

For the bimodal distribution p���, we have

�Td
�3� �

K

N
Td

�3,0�� ��d

�B�Bd −
1

2s
ln cosh� �

Tfr
��

� �
K

N
Td

�3,0� �

�B
� �d

�Bd −
�

2�B
� when

�

Tfr
	 1,

K

N
Td

�3,0� �

�B� �d

�Bd −
1

�2s
� when

�

Tfr
� 1.�

�41�

We see that the design effect increases �Td
�3� and pushes the

triple point to the right in the phase diagram Fig. 3, while the
solvation effect acts in the opposite direction. Interestingly,
in the statistically independent regime, when � /Tfr	1, the
sign of �Td

�3� is determined by the competition of the design
term �d /�Bd and folding term � /�B. Specifically, large de-
sign solvation strength �d /�Bd�� /�B would make �Td

�3�

�0 and in this sense the design makes the folded state more
stable. From Eq. �38�, we already know that the glass tem-
perature is independent of � in the saturation region � /Tfr

�1. Not surprisingly, in this region, the sign of �Td
�3� is also

independent of �.

2. Example: Gaussian distribution

When p��� is Gaussian, we get

�Td
�3� �

K

N
Td

�3,0�� ��d

�B�Bd −
�2

2�B2

− 2s − 2s� �d

�Bd�2

�1 + 2z�2s�� . �42�

The interesting and rather unexpected result is that the design
effect, when it is very strong, might lead to a reduction of
Td

�3�; in other words, it might have an adverse effect on the
stability of the folded phase. Inspection of the origin of the
negative term �−��d /�Bd�2 shows that its origin is due to the
fact that a very strong solvation effect in the design brings in
a significant fraction of very strongly solvophilic monomers;
even though only a small fraction of them subsequently turn
out inside the globule in the folded state, they nevertheless
make the destabilizing effect on the globule. We emphasize
that such danger exists only when the solvation effect in the
design is so strong that not only �d /�Bd�� /�B, but
s�d /�Bd�� /�B. It is unclear if such a situation is realistic.

D. Folding temperature

Next let us consider the folding temperature Tf away but
not far from the triple point. When Td�Td

�3�, we have

�B�Bd +
K

N
��d

Td
= ��sT +

�B2

2T
+ Fsurf��

T=Tf

. �43�

In the vicinity of the triple point, when Td=Td
�3�−�Td, where

�Td	
K
NTd

�3�, we have �Fsurf�T=Tf
��Fsurf�T=Tg,Td=T

d
�3,0� or

�B�Bd

Td
�3�

�Td

Td
�3� � sTf +

�B2

2Tf
− sTg −

�B2

2Tg
, �44�

which yields upon some algebra

Tf � Tg�1 +��B�Bd

sTd
�3�Tg

�1 −
Td

Td
�3��� . �45�

In Fig. 3, the phase diagram of the system is sketched. In
the regime of temperature T below Tf, the designed se-
quences will be thermodynamically stable when folded to the
target state. In the regime of Td�Td

�3�, the sequences ob-
tained will be either in a frozen glassy state or in a random
liquidlike globule.

E. Depletion effect

In the preceding sections, we assumed no depletion effect.
Here we will see what happens if there is depletion. Deple-
tion of monomers may happen for the Gaussian p���, while
in the bimodal case, there is no depletion since the number of
monomers for each monomer type is abundant. When deple-
tion occurs, �=1 for ���m and �=0 for ���m, and this
leads to

�
�m

�

ptot���d� = K/N . �46�

The integration result is
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�47�

For the case of no design, ��d=0,

erfc��m
0

�2
� =

2K

N
. �48�

Therefore, we have erfc��m /�2��erfc��m
0 /�2�, and this

gives �m��m
0 , so with design, the surface monomers are

more hydrophilic than without design. This makes physical
sense, and this is also consistent with the no-depletion case
�	1, in which design favors the hydrophilic monomers on
the surface.

V. SEQUENCE-SPACE ENTROPY

Sequence design, when it is realized computationally or if
it could be realized experimentally, helps finding sequences
with particularly low ground-state energy. But of course
there is a limit—there is always a sequence whose ground-
state energy is the lowest among all sequences, and, there-
fore, no design can possibly produce any sequence with
lower energy. More generally and more practically, the lower
the ground-state energy we want to obtain, the fewer se-
quences exist which can meet our demand. One may want to
know how many sequences are there to choose from with
any given ground-state energy. The design paradigm pro-
vides the general method to solve a such problem. Indeed,
we can compute the sequence-space entropy �which is just
the logarithm of the number of relevant sequences� as a func-
tion of Td, and as we also know the average ground-state
energy as a function of Td, we can determine the number of
sequences as depends on their ground-state energy. This pro-
cedure in volume approximation is described in Ref. �21�.
Here we want to consider how it is affected by the surface
solvation effect.

In principle, the sequence-space entropy depends quite
strongly on the target-state fold here denoted as �; this de-
pendence is called the designability of the fold �see, for ex-
ample, recent work on this subject �25��. Here, we will ne-
glect this fact. This is not because designability is
unimportant—it is very important indeed—but our goal is to
look at the role of the sequence solvation effect, and so to
make this task manageable, we have to sacrifice the design-
ability issue as a zeroth approximation.

To find the sequence-space entropy, we consider
the sequence-space free energy −Td ln Z, where Z
=�seqexp�−Hd�seq, � � /Td�. Note that design is to a certain
conformation �, so in the partition function here, the sum-
mation runs over sequences. The sequence-space entropy per
monomer, sseq, can then be found using high-Td expansion
just in the same way as the calculation of �E��seq��, formula
�7�. The result is given by

sseq = −
��− Td ln Z�

�Td
� ln q −

�Bd2
+

K

N
�d2

2Td
2 , �49�

where q is the effective number of “letters in the alphabet”
determined from the total number of possible sequences
of length N: Nseq=qN. It is not difficult to show that q
=−��p���ln p��� �see Eq. �3�; q�18 for real proteins�.

The number of sequences is maximal if we impose no
constraints on the quality of design, which means the se-
quence entropy has to be maximal when Td is at the triple
point. Therefore, we can compute sseq

max using formula �49� at
Td=Td

�3�. The result reads

sseq
max � ln q − s�1 −

2�Td
�3�

Td
�3,0� +

K�d2

N�Bd2� , �50�

where the ratio �Td
�3� /Td

�3,0� should be taken from Eq. �40� or
from the simplified versions of it, Eq. �41� or �42�.

First, in the volume approximation, when there is no sur-
face term, we have sseq

max=ln q−s. This result is a very natural
consequence of our neglect of the difference in designabili-
ties between different folds. Indeed, the volume approxima-
tion of sseq

max indicates that the number of sequences that can

be designed for a given conformation � is eNsseq
max

=Nseq/Nconf, which means that all Nseq=qN sequences are
equally distributed between Nconf=esN conformations. This is
because the fraction of sequences with ground-state energy
above �E��seq��, Eq. �7�, is extremely small �see the Appen-
dix�, so practically all sequences have their ground-state en-
ergy around �E��seq��.

Second, we look at the role of the surface effect. For
simplicity, we restrict consideration to the most typical re-
gime of statistical independence between surface and bulk
contributions. For both the bimodal distribution and Gauss-
ian distribution, plugging �Td

�3� into Eq. �50�, we get the
following simple result:

sseq
max = ln q − s −

sK

N
� �

�B
−

�d

�Bd�2

. �51�

This tells us that the surface solvation effect reduces the
number of sequences, sseq

max� ln q−s. This happens because
some of the sequences, with inadequate supply of hydro-
philic monomers, have their ground-state energies above
�E��seq�� when we look at them carefully enough to notice
their surface energy. Accordingly, the fraction of sequences
with ground-state at � is below its “fair” share of e�ln q−s�N

and even the maximal sequence-space entropy falls short of
its volume-approximated value ln q−s. Only very careful de-
sign, at which �d /�Bd=� /�B, would be able to provide the
ensemble of sequences adequate to their solvation condi-
tions, in which case the solvation effect does not increase
energy and does not rule any sequences out of competition.
Notice that the condition �d /�Bd=� /�B does not involve the
design temperature; it specifies only the balance of solvation
and bulk heteropolymeric effects.

Let us now look at the situation differently; namely, let us
write down the folding temperature Tf in terms of sseq instead
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of Td. Indeed, Td is a purely technical concept which may or
may not directly correspond to experimental reality; for in-
stance, design can be controlled by some analog of the sol-
vent quality instead of temperature. At the same time, the
sequence entropy is a very clear quantity; it is the number of
sequences whose ground-state stability corresponds to the
temperature Tf. Simple algebra shows that

Tf = Tg�1 +��B�Bd

sTgTd
�3��1 −� ln q − sseq

max

ln q − sseq
�� . �52�

This allows us to reinterpret the phase diagram, Fig. 3, with
sequence entropy on the horizontal axis.

Finally, it is known �8� that the quality of design is best
characterized by the energy gap between the energy of the
sequence in its purported target state and the average ground-
state energy:

�� =
F��f���Tg

− �E��seq��

N
. �53�

Therefore, we should look at the relation between sequence
entropy and ��. From the above results, we have found

sseq = ln q − s�1 +
��

�2s�B
+

K

N
��2�1 +

K

N
�� , �54�

where the solvation-related coefficients are given by

� =
�d2

�Bd2 − 2
��d

�B�Bd �55�

and

� =� �2p����d� +
1

2s
ln � p���e−�fr���d� . �56�

There are fewer sequences available for larger energy gap
design.

1. Example: Bimodal distribution
When p��� is bimodal,

� =
1

2s
ln cosh

�

Tfr
. �57�

2. Example: Gaussian distribution
When p��� is Gaussian,

� =
�2

2�B2 + 2s + 2s� �d

�Bd�2

. �58�

In either case, we see that the number of available se-
quences drops dramatically as we increase their desired qual-
ity by choosing a larger ��.

VI. CONCLUSION

In this paper, we examined the interplay of surface solva-
tion effects and sequence design for a proteinlike heteropoly-
mer globule. Ideologically, our treatment of disordered se-
quences followed the theoretical studies of heteropolymer
folding in Refs. �4–6,12�, and in our treatment of preferential

solvation we used the approach of Ref. �9�. What we did is
we applied the REM in the new challenging context.

As in the volume approximation, designed sequences in
the target conformation have lower energy than random se-
quences. This is not surprising: this is after all the sole pur-
pose of design. Less obvious, we found that the role of pref-
erential solvation for the design itself might be controversial.
The problem is that when design conditions favor too
strongly the hydrophilicity of the surface monomers, these
monomers can have an adverse effect on the overall compo-
sition of the sequence and then some hydrophilic monomers
are found in the interior, thus making the globule less stable.

Speaking about the phase diagram of the heteropolymer
globule, we found that the surface solvation effect operates
differently for the two most typical examples of monomer
composition. If there are only two types of monomers, then
the glass transition temperature remains independent of the
design condition, as was found in the volume approximation.
But this is no longer the case when there is a wide Gaussian
distribution of monomer types; in this case, design brings in
a noticeable fraction of very hydrophilic monomers from the
tail of the hydrophilicity distribution, and they do affect the
glass transition.

To conclude, our study shows it possible to incorporate
preferential solvation effects into REM-based heteropolymer
theory, and some of the obtained results are quite delicate
and unexpected. In reality, the role of surface in molecules of
realistic sizes is quite significant, so the effects which were
examined here on a perturbative level, considering surface
contributions O�K /N� very small, might be quite substantial
and very important.
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APPENDIX: PROBABILITY DISTRIBUTIONS OF THE
LOW-ENERGY STATES IN THE REM

To make this work self-contained, we review here the
probability distributions of the low-lying states in the REM.
Further details on this subject can be found in �22�.

Ground-state energy

Consider some M�M=esN� statistically independent en-
ergy levels, each distributed with probability density w�E�.
The question is this: what is the probability distribution
W�E� of the lowest among these M levels? The general
answer, due to the statistical independence, reads

W�E� = Mw�E���
E

�

w�E��dE��M−1

. �A1�

Here, w�E� is the probability that there is a level at E,
��E

�w�E��dE��M−1 is the probability that all other M−1 lev-
els happen to be above E, and the factor M reflects the fact
that any of the M levels may play the role of the lowest one.
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With a large number M�1 of levels taken from the dis-
tribution w�E�, the lowest one of them will surely be located
somewhere in the low-energy tail of the distribution w�E�. In
this region, �E

�w�E��dE� is very close to unity or, in other
words, �E

�w�E��dE�=1−�−�
E w�E��dE��exp�−�−�

E w�E��dE��.
Neglecting also 1 compared at M in M−1, we then rewrite
Eq. �A1�:

W�E� � Mw�E� exp�− M�
−�

E

w�E��dE�� . �A2�

Where is the maximum of W�E�? In other words, what is
the most probable ground-state energy Em? The condition
W��E�=0 yields

Mw�Em� = �ln w�Em���. �A3�

Apart from the logarithmic corrections, this returns the fa-
miliar condition traditionally written in a careless form
Mw�E��1 in which units do not match.

We now remember that w�E� is Gaussian,

w�E� =
1

�2�N�B2
e−E2/2N�B2

. �A4�

In this case formula �A3� reads

Mw�Em� = − Em/N�B2, �A5�

which then implies

�A6�

and by simple iteration we finally have

Em � − �2sN�B +
�B

2�2s
ln�4�Ns� � − �2sN�B + O�ln N� .

�A7�

The leading term here corresponds to dropping the preexpo-
nential factor of w�E� when writing Mw�E��1, in which
case, of course, units match and the result is correct.

It is fairly obvious, and will be verified instantly, that
W�E� is concentrated around Em. Accordingly, let us assume
E=Em+�, with ���	 �Em�. In this small-� range, we can sim-
plify the Gaussian w�E�:

�A8�

where Tfr=
�B
�2s

. We further use the Gaussian shape of w�E�
and the proper asymptotics of the error function to write

M�
−�

E

w�E��dE� � Mw�E�
N�B2

− E
� e�/Tfr. �A9�

Plugging both Eqs. �A8� and �A9� into Eq. �A2�, we arrive at
the following probability distribution of the ground-state en-
ergy:

W�E� � �1/Tfr�e��/Tfr�−exp��/Tfr�, �A10�

where, once again,

� = �E − Em�, Tfr =
�B
�2s

. �A11�

The probability distribution W�E� is essentially the Gumbel
distribution in extreme value statistics �22�. As expected,
W�E� is not symmetric; it decays much faster to the right
�higher energies� than to the left �lower energies�. However,
the characteristic scale in both cases is set by the quantity
Tfr=�B /�2s and does not contain N in any form. It is only
the parameter-free “shape” e�−e�

that is asymmetric. It is also
satisfying that W�E�, Eq. �A10�, is correctly normalized.

Lowest- and second-lowest-energy states:
Joint distribution

Consider now the joint probability distribution of the two
lowest energies. Exact formula for this joint distribution,
similar to Eq. �A1�, reads

W�E1,E2� = M�M − 1�w�E1�w�E2���
E2

�

w�E��dE��M−2

.

�A12�

Similar to Eq. �A1�, we rely here on the statistical indepen-
dence of the energy levels in the REM, which implies that
we should consider the independent factors of one energy
level present at E1 �which gives w�E1��, another energy lev-
els present at E2 �yielding w�E2��, times the probability that
all other M−2 energy levels are above E2, and times the
combinatorial factor M�M−1�, which reflects the idea that
any two of the M levels can play the role of the lowest and
second lowest.

The first step to simplify this distribution is to notice that
both the lowest-E1 and second-lowest-E2 energy levels are
practically always located far in the lower-energy tail of the
distribution w�E�. Similar to Eq. �A2�, we then write

W�E1,E2� = M2w�E1�w�E2�exp�− M�
−�

E2

w�E��dE�� .

�A13�

The next step is to rely on Eqs. �A8� and �A9�. Denoting

E1 = Em + �1, E2 = Em + �2, �A14�

and assuming ��1,2�	 �Em�, we arrive at

W�E1,E2� �
1

Tfr
2 e��1/Tfr�+��2/Tfr�−exp��2/Tfr�. �A15�
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Some derivative probability distributions

It is a wonderfully rewarding exercise to establish that
integrating out the first excited state E2 returns the ground-
state distribution �A10�, as it must: �E1

� W�E1 ,E2�dE2

=W�E1�.

Probability distribution of the second lowest state

For the second lowest energy, we have by simple integra-
tion

W2�E� = �
−�

E

W�E1,E�dE1 =
1

Tfr
e2��/Tfr�−exp��/Tfr�.

�A16�

This distribution is different from that of the lowest-energy
state, Eq. �A10�, as is clear from Fig. 4. It is hardly a surprise
that the second-lowest-energy distribution is somewhat
shifted towards larger energies compared with the distribu-
tion of the ground state.

Conditional probability of E2 at given E1

Suppose ground-state energy is fixed at E1. What is the
probability distribution of E2 at the given E1? According to
the general rules of probabilities, this quantity is equal to

W�E2�E1� =
W�E1,E2�
W�E1�

=
1

Tfr
e��2/Tfr�−exp��2/Tfr�+exp��1/Tfr�.

�A17�

For understanding, it is useful to mention that this quantity is
normalized by the condition �E1

� W�E2 �E1�dE2=1.

Probability distribution for the gap between lowest
and second lowest states

As regards the gap between two lowest-energy states,
�E=E2−E1, its probability distribution is also easily found:

W��E� = �
−�

�

dE1�
E1

�

dE2W�E1,E2���E2 − E1 − �E�

= �
−�

�

W�E2 − �E,E2�dE2

�
1

Tfr
2 �

−�

�

exp� �2 − �E

Tfr
+

�2

Tfr
− e�2/Tfr�d�2

=
1

Tfr
e−�E/Tfr�

0

�

�e−�d�

=
1

Tfr
e−�E/Tfr. �A18�

Of course, this is the result for �E�0, so in general the
probability distribution for the gap reads

W��E� = �0 for �E � 0,

�1/Tfr�e−�E/Tfr for �E � 0.
� �A19�

It might seem surprising at first glance that this probability
decays only as exponential, not the sharper e−exp � function.
Indeed, if we imagine a gap forming as fixing the lowest
energy at the typical place and then looking at the second
lowest level, then the probability of the gap decays in a very
sharp, double-exponential way. However, if we think differ-
ently, that E2 is fixed in a typical place and then the gap is
determined by where E1 is then the probability of E1 going
down is just exponential. Thus, from this argument we gain
the following insight. The probability of the gap is exponen-
tial because the dominant possibility for the gap to be large
has an unusually low E1 rather than a high E2. Thus, a large
gap is typically the result of the low ground state.

Averages

Using formula �A10�, it is easy to compute the expecta-
tion value of the ground state energy:

�A20�

where �=� /Tfr and �=e�. As a fact of mathematical curios-
ity, there appears ��, the derivative of the Euler �
function—a rather infrequent guest in physics calculations.
However exotic mathematically, this term is smaller than the
logarithmic correction term in Eq. �A7� and so it must be
neglected if the first approximation is used for Em.

We can also compute the average value of the second
lowest energy:

-4 -3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

lowest

second
lowest

ξ

P(ξ)

FIG. 4. �Color online� Probability distributions for the lowest-
and second-lowest-energy states in the REM. The horizontal axis is
�=� /Tfr, and the vertical axes is the probability density for this
quantity � �so the area under each curve in the figure is unity�.
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�A21�

This is greater than the average ground-state energy �A20�
by just the amount Tfr=�B /�2s.

The latter result is also consistent with the fact that the
average gap, according to Eq. �A19� is equal to

��E� = Tfr = �B/�2s . �A22�
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